3.660 \(\int \frac {(c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx\)

Optimal. Leaf size=109 \[ -\frac {\cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} F_1\left (\frac {1}{2};\frac {5}{2},-n;\frac {3}{2};\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right )}{2 \sqrt {2} a^2 f \sqrt {\sin (e+f x)+1}} \]

[Out]

-1/4*AppellF1(1/2,-n,5/2,3/2,d*(1-sin(f*x+e))/(c+d),1/2-1/2*sin(f*x+e))*cos(f*x+e)*(c+d*sin(f*x+e))^n/a^2/f/((
(c+d*sin(f*x+e))/(c+d))^n)*2^(1/2)/(1+sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2784, 139, 138} \[ -\frac {\cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} F_1\left (\frac {1}{2};\frac {5}{2},-n;\frac {3}{2};\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right )}{2 \sqrt {2} a^2 f \sqrt {\sin (e+f x)+1}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*Sin[e + f*x])^n/(a + a*Sin[e + f*x])^2,x]

[Out]

-(AppellF1[1/2, 5/2, -n, 3/2, (1 - Sin[e + f*x])/2, (d*(1 - Sin[e + f*x]))/(c + d)]*Cos[e + f*x]*(c + d*Sin[e
+ f*x])^n)/(2*Sqrt[2]*a^2*f*Sqrt[1 + Sin[e + f*x]]*((c + d*Sin[e + f*x])/(c + d))^n)

Rule 138

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f))])/(b*(m + 1
)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 139

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*((b*(e + f*x))/(b*e - a*f))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
((b*e)/(b*e - a*f) + (b*f*x)/(b*e - a*f))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 2784

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[(a^m*Cos[e + f*x])/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]]), Subst[Int[((1 + (b*x)/a)^(m - 1/2)*(c
 + d*x)^n)/Sqrt[1 - (b*x)/a], x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0]
 && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {(c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx &=\frac {\cos (e+f x) \operatorname {Subst}\left (\int \frac {(c+d x)^n}{\sqrt {1-x} (1+x)^{5/2}} \, dx,x,\sin (e+f x)\right )}{a^2 f \sqrt {1-\sin (e+f x)} \sqrt {1+\sin (e+f x)}}\\ &=\frac {\left (\cos (e+f x) (c+d \sin (e+f x))^n \left (-\frac {c+d \sin (e+f x)}{-c-d}\right )^{-n}\right ) \operatorname {Subst}\left (\int \frac {\left (-\frac {c}{-c-d}-\frac {d x}{-c-d}\right )^n}{\sqrt {1-x} (1+x)^{5/2}} \, dx,x,\sin (e+f x)\right )}{a^2 f \sqrt {1-\sin (e+f x)} \sqrt {1+\sin (e+f x)}}\\ &=-\frac {F_1\left (\frac {1}{2};\frac {5}{2},-n;\frac {3}{2};\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right ) \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n}}{2 \sqrt {2} a^2 f \sqrt {1+\sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 7.01, size = 0, normalized size = 0.00 \[ \int \frac {(c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(c + d*Sin[e + f*x])^n/(a + a*Sin[e + f*x])^2,x]

[Out]

Integrate[(c + d*Sin[e + f*x])^n/(a + a*Sin[e + f*x])^2, x]

________________________________________________________________________________________

fricas [F]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n}}{a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \sin \left (f x + e\right ) - 2 \, a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

integral(-(d*sin(f*x + e) + c)^n/(a^2*cos(f*x + e)^2 - 2*a^2*sin(f*x + e) - 2*a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((d*sin(f*x + e) + c)^n/(a*sin(f*x + e) + a)^2, x)

________________________________________________________________________________________

maple [F]  time = 1.47, size = 0, normalized size = 0.00 \[ \int \frac {\left (c +d \sin \left (f x +e \right )\right )^{n}}{\left (a +a \sin \left (f x +e \right )\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x)

[Out]

int((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e) + c)^n/(a*sin(f*x + e) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c+d\,\sin \left (e+f\,x\right )\right )}^n}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*sin(e + f*x))^n/(a + a*sin(e + f*x))^2,x)

[Out]

int((c + d*sin(e + f*x))^n/(a + a*sin(e + f*x))^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))**n/(a+a*sin(f*x+e))**2,x)

[Out]

Timed out

________________________________________________________________________________________